Richard A. Posner does not impute nefarious motives to researchers conducting high-energy particle collision experiments. But in his latest book, Catastrophe, Posner does suggest that one of these experiments could trigger a “strangelet scenario”—a chain reaction that will condense the entire Earth into a tiny ball just 100 meters in diameter.
Posner is not a scientist: rather, he is a law professor at University of Chicago and a federal appellate judge on the Seventh Circuit. Rumor has it Posner was considered—briefly—for the post of Harvard Law School dean in 2003. (He quickly took himself out of the running for the job.)
Beyond the legal world, Posner is renowned as a prolific and insightful scholar: he is the author of more than 30 books, and—according to one list—number 70 on the list of most frequently-cited public intellectuals alive. (Granted, Posner did compile the list himself.)
Posner argues that his background as a lawyer and an economist need not disqualify him from opining on the “strangelet” question. Fifty pages of footnotes attest to the fact that Posner is no scientific dilettante. But is he an alarmist?
THE END OF THE WORLD AS WE KNOW IT
Posner considers a slew of world-ending scenarios with REM-style enthusiasm. He reports one scientist’s estimate that there’s a 1 in 100,000 chance of an asteroid smashing earth in any given year and killing a billion people. Alternatively, Posner speculates, “superintelligent robots” might turn on their human creators and “kill us, put us in zoos, or enslave us.”
Several of Posner’s disaster set-ups feel like they’ve been ripped from the scripts of Hollywood blockbusters (think Armageddon or The Matrix). But his strangelet scenario deserves special consideration here at Harvard because particle accelerators figure prominently in the work of several of the University’s most prominent physicists.
Posner blows the whistle on the Relativist High Ion Collider (RHIC)—affectionately known among physicists as “Rick”—a federally-financed research facility on Long Island.
RHIC, which generates high-energy subatomic collisions between gold ions, quietly opened for business in 2000. Even RHIC’s sharpest opponents calculate the risk of a world-ending “strangelet scenario” to be very, very small. According to Posner, an upper-bound estimate of the danger of a strangelet disaster is 1 in 500,000 over the 10-year period for which RHIC will be in operation. An alternative estimate from Swiss and Israeli scientists puts the danger at 1 in 500 million. But although the likelihood of a strangelet catastrophe is minimal, should we be playing the odds with the future of mankind?
Posner takes a midpoint between the two disaster estimates, and he posits—for the sake of argument—that the likelihood of a world-ending strangelet scenario over the next decade is 1 in 10 million. In other words, there’s a 1 in 10 million chance that 6 billion people will die at some point in the next decade because of RHIC. Thus on average, we would expect RHIC to kill 60 people per year. Is that a sacrifice we should be willing to make to push the frontiers of physics forward?
Admittedly, the results of the RHIC experiments could be fascinating. They could “give us insight into the conditions of the early universe, and perhaps also the mechanics of super-dense conditions in black holes,” according to Physics Department Chairman John Huth.
But are those insights worth dying for?
After reading Catastrophe, I spent several sleepless nights worrying about the 600 innocent souls who—in our hypothetical world of risk-benefit analysis—will be swallowed alive by an out-of-control strangelet sometime in the next decade. I was so furious that I started rounding up fellow socially-minded Harvardians to head to RHIC’s Upton, N.Y. home and protest this travesty. In a fearful fury, I decided to check with Harvard’s crack team of experimental high energy physicists to see whether Posner’s calculations are on-target.
Read more in Arts
Because of Winn-Dixie Review