Advertisement

Bio Class Provides Research Exposure

MCB 100 gives 18 students real-world lab experience

Kevin J. Paik

Steve Y. Lee ’06 carefully pipettes bacteria. Lee is a member of the 18-person class to which over 50 students applied. MCB 100 teaches undergraduates important lab skills by allowing them to work on professors’ cutting-edge research.

On the third floor of the Divinity Ave Biological Laboratories, undergraduates have a space to call their own.

Three small labs, which boast some of the field’s most impressive technology, are now the home of Molecular and Cellular Biology (MCB) 100, a new class that throws undergraduates into the trials and tribulations of laboratory research.

All of the space is reserved for undergraduates. Eighteen students file in on their own time, working about 10-12 hours a week on any one of the three projects. Some days students might spend no more than 15 minutes in the lab—to set up a reaction or take a quick analysis of the previous day’s results. Other days they are there for hours, puzzling through experimental research.

Each student keeps a meticulous log of their research in a small black binder, work which will eventually culminate in a professional-style—and possibly published—report of their semester.

A New Development

Advertisement

MCB 100 tries to broaden biology and bio-chemistry concentrators’ conceptions of research beyond what they learned from introductory science labs.

“Ideally, every week we go through the nitty-gritty of what it’s like to be in a lab. The results that they are acquiring right now are as though they were graduate students or post-doctoral fellows, and there is the potential that these research results could end up in a publication,” says Angela Koehler, a fellow at the Broad Institute, who has six students assisting her in screening libraries of small molecules for transcription factors.

Three top researchers—Koehler, Head Tutor for Biochemical Sciences Richard Losick, and Associate Professor of MCB Craig Hunter—have offered their projects to the program this spring, allowing six students to assist each one.

Losick’s project involves experimental examinations of mutants in the production of biofilms, which are essentially communities of bacteria that reside throughout the human body. Hunter’s students work on examining aspects of the recently-discovered phenomenon of RNAi.

MCB 100 students work in-depth on one specific project, but convene in weekly group meetings to see what’s going on in the other groups—a practice which professors say the average student doesn’t experience until graduate student lab rotations.

In this way, Losick, Koehler and Hunter say that the students get a richer, tougher experience than in labs attached to introductory science classes.

“The lecture course labs are designed to illustrate specific points and methodologies, whereas this course is designed to provide the students with a direct experience of what research is really about,” says Hunter. “The frustrations, the failed experiments... it’s not the tidy simple conclusions. The process is not always a straight line.”

This process, of researching without having a predetermined answer nor a defined protocol for obtaining results, has previously been reserved for students willing to work in professors’ labs on their own time.

Often, these students are preparing to write honors theses.

But professors within the biology department, even before the discussion of the curricular review began, decided that students needed more opportunities to have this kind of research, either outside the experience of thesis-writing or in preparation for that experience.

Advertisement